Modeling the Cladding Leak Detection Shop of a Nuclear Reactor's Module

Customer:




Rosatom State Atomic Energy Corporation (Rosatom) is a state holding which incorporates more than 360 enterprises in the nuclear field. It includes all nondefense nuclear ventures, enterprises from the nuclear weapon sector, research organizations, and nuclear icebreaker fleets. Rosatom is a leading organization in the nuclear industry. It holds second position in world uranium stocks, fifth in mining, and fourth position in world nuclear energy production. It controls 17% of the world nuclear fuel market and 40% of the world market of enrichment services.


Model developers: Yuriy Podvalny, Denis Gerasimov.

Problem:




When designing the fuel cladding leak detection shop, developers needed to collect the data and system parameters in cases of ruptured fuel elements production.


The cladding leak detection shop is part of an automated line of fuel assembly production. Leak control is based on heating the fuel element groups. While warming up, defective units eject the control gas, which is detected by a leak locator. The defected group is divided into two parts. Each part is screened in the same way until the leaking fuel element is found.


System engineers needed to define the dependence between annual output (production), input storage volume, and fuel element group size, to charge into furnace or different spoilage rate. In addition, they needed to define the amount of dead fuel elements assemblies due to system downtime when input storage is full.

Solution:




Since leakage rate has a stochastic nature, developers built a simulation model of a cladding leak detection shop and tested different scenarios and system operation algorithms, running multiple experiments on the model.


The model, built in AnyLogic, simulates two algorithms of leak detection shop operation. The algorithms are based on different approaches for the detection of a leaking fuel element when the fuel element group is screened and leakage is detected.


First algorithm: when leakage is detected, half of the fuel elements group is uncharged from furnace #1 to furnace #2. Both groups are heated and examined for leaking fuel elements. The qualified group is charged to the output storage. The defective group is again divided into two groups and examined for the leaking fuel element, and so on.


Modeling Nuclear Fuel Production
Simulation Model Screenshot

If both groups appear to be defective, half of each group is charged to the output storage and the examination of the rest of the halves begins. The fuel elements groups in the output storage are inspected after examination of the first halves is completed. The input storage picks up incoming assemblies with scheduled frequency. Thus, the ruptured group is "uncoiled" by two furnaces. A new group of fuel elements is not charged until the ruptured element is found. In case leakage is not detected, the furnaces operate in course, with the second furnace waiting for the first one to complete the examination of the fuel elements group.


Second algorithm: the furnaces operate independently. The ruptured group is "uncoiled" by a furnace in isolation from another until the leaking element is found. A new group of fuel elements is not charged into the furnace until the previous group is completely examined. This approach allows two furnaces to operate simultaneously.


Model user can vary the following parameters of algorithms:

  • Leakage frequency
  • Size of fuel elements group to charge into the furnace for examination 
  • Input storage size

In the course of the research, every combination of value parameters was run on the model about 100 times for "one year" in terms of simulation model time.

Results:




  • Production rate of operation algorithms was tested for different leakage frequency cases.
  • The size of the fuel elements group to charge into a furnace was defined to provide the maximum production rate for the given leakage frequency.
  • Simulation brought out the possible loss reduction due to down time if the volume of input storage is increased.
  • Leak detector production stats were received for various leak frequencies and different parameters. Each time, the model was run for 100 "simulation" years.
  • Simulation spotted the dependence between maximum volume of input storage and the size of the fuel elements group to charge into the furnace. Numerical values were received to express this dependence for various leak frequency.

Conclusion:




At the stage of designing the fuel cladding leak detection shop, experiments with the real system required lots of financial and time expenses. Analysis of data collected during simulation allowed the engineers to define the optimal design parameters to provide maximum production.


The customer is planning to use the simulation model for testing possible changes in the production line, like adding a new furnace. Users can vary parameters by editing data in the model interface. The simulation model will serve as a decision support tool for the equipment buyer for many years.

More Case Studies

  • Planification et optimisation de la ligne de production automatisée
    Centrotherm Photovoltaics AG est un fournisseur mondial de technologies et équipements pour les industries photovoltaïques, des semi-conducteurs et de la microélectronique. L’entreprise doit identifier les lignes de production automatisée et configuration usine optimales afin de minimiser les coûts et maximiser le flux de production et la fiabilité.
  • L’usine de fabrication de GE choisit AnyLogic pour une aide à la décision en temps réel
    En 2012, GE a ouvert une nouvelle usine de fabrication de batteries avec le lancement d’une activité de stockage d’énergie innovante. La nouvelle opportunité de GE a représenté de nombreux défis, tels que l’augmentation de la production et du rendement avec des processus en évolution et des incertitudes. La société Ge disposait d’une masse de données, mais elle manquait d’un outil pour répondre aux questions, analyser les données convenablement ou pour tester et évaluer les options.
  • L’analyse de capacité avec AnyLogic
    Avec le logiciel de simulation AnyLogic comme la pièce maîtresse, NASSCO utilise un système d'analyse fait sur mesure appelé le Système de Modélisation de Simulation à Grande échelle pour la Construction navale (LSMSe) pour fournir des analyses de capacité f détaillées tant pour la production actuelle que pour les nouveaux chantiers potentiels.
  • Simulation de la construction d’un tunnel à l’aide d’un tunnelier
    Le coût d’une heure d’arrêt d’un tunnelier (machine de forage de tunnel) est habituellement élevé et les gestionnaires de projet doivent s’efforcer d’éviter les retards dans la construction. Le but du projet de simulation, qui a été mené à l’université Bochum de la Ruhr en Allemagne, consistait à créer un modèle de simulation capable de déterminer les goulots d’étranglement dans les processus de construction du tunnel, afin de minimiser les pertes financières potentielles.
  • Planification de la production dans l’industrie maritime
    Les dirigeants de l’un des fabricants italiens les plus en vue recherchaient une nouvelle approche intelligente pour simplifier l’élaboration du planning. FD et DSE ont été approchés pour développer un outil de simulation du planning entièrement nouveau. L’objectif était de fournir au planificateur de la production réelle une mine d’informations pour le planning permettant de tester et d’ajuster le plan avant sa mise en œuvre. Le concept de l’outil s’organisait autour de l’aide décisionnelle, ce qui signifie que l’individu peut facilement affiner les idées et tester la faisabilité d’un plan dans de multiples situations avant de le déployer dans l’atelier.
  • Shipyard démontre sa capacité à honorer les commandes et gagne une visibilité sur les installations et la distribution de la production
    Confronté à une commande majeure de sous-marins propulsés au diesel, Admiralty Shipyards JSC doit évaluer si les installations de production actuelles peuvent satisfaire cette commande, et dans le cas contraire, déterminer ce qui peut être produit d’ici 2016. Admiralty Shipyards JSC cherche également à confirmer qu’il n’y aura pas besoin d’une installation de production supplémentaire pour achever la commande.
  • Simulation de la production de glaces: identification des contraintes et optimisation du plan de production
    Conaprole, la plus grosse société de production de produits laitiers d’Uruguay, produit plus de 150 SKU dans son usine de fabrication de glaces, à l’aide de cinq lignes de production, chacune de ces lignes comportant jusqu’à cinq configuration d’emballage différentes. La direction devait reformuler ses plans afin d’équilibrer l’offre et la demande et éviter les ruptures de stock pour les produits clés. Elle cherchait également à optimiser ses capacités de production.
  • Analyse des stratégies de management pour la montée en puissance de la production d’avions
    Le Groupe Airbus Group s’est joint au projet de l’Union Européenne ARUM (Adaptive Production Management – gestion de la production adaptative), qui a pour but de créer une solution IT pour la réduction des risques, la prise de décision et la planification pendant les montée en puissance du nouveau produit.
  • Simple Simulation Model Helps Intel Avoid Production Plant Downtime
    Intel factories used a particular type of equipment that often broke down, which caused capacity constraints. These expensive parts were used in critical factory operations, and the repairs took significant time, so it was necessary to have extra spare parts on hand to avoid downtimes. Broken parts caused constraints at some of the factories while other factories over purchased spares.
  • La centrale métallurgique Tcheliabinsk utilise un modèle de simulation d’atelier de fonderie électrique d’acier
    The model simulates the redesigned ground environment and production processes of the shop floor to be renovated. This is one of the significant examples of simulation modeling technology appliance in metallurgical industry.