Supply chain and hybrid modeling: the Panama Canal operations and it’s salinity diffusion

This paper deals with the simulation modeling of the service supply chain and the salinity and its diffusion in the Panama Canal. An operational supply chain model was created using discrete-event simulation. Once complete, a component based on differential equations was added to the model to investigate the intrusion of salt and the resulting salinity diffusion into the lakes of the canal. This component was implemented in the AnyLogic simulation modeling environment by taking advantage of the concept of hybrid modeling that is embedded in AnyLogic.

Investigating Output Accuracy for a Discrete Event Simulation Model and an Agent Based Simulation Model

In this paper, we investigate output accuracy for a Discrete Event Simulation (DES) model and Agent Based Simulation (ABS) model. The purpose of this investigation is to find out which of these simulation techniques is the best one for modelling human reactive behaviour in the retail sector. In order to study the output accuracy in both models, we have carried out a validation experiment in which we compared the results from our simulation models to the performance of a real system. Our experiment was carried out using a large UK department store as a case study.

Toward Simulation-Based Real-Time Decision-Support Systems for Emergency Departments

Emergency Departments (EDs) require advanced support systems for monitoring and controlling their processes: clinical, operational, and financial. A prerequisite for such a system is comprehensive operational information (e.g. queueing times, busy resources,…), reliably portraying and predicting ED status as it evolves in time. To this end, simulation comes to the rescue, through a two-step procedure that is hereby proposed for supporting real-time ED control.

Simulating The Effect on The Energy Efficiency of Smart Grid Technologies

The awareness of the greenhousegas effect and rising energy prices lead to initiatives to improve energy efficiency. These initiatives range from micro-generation, energy storage and efficient appliances to controllers with optimization objectives. Although these technologies are promising, their introduction may rise further questions. The implementation of such initiatives may have a severe impact on the electricity infrastructure. If several of these initiatives are introduced in a combined way, it is difficult to analyse their overall impact.

Autonomic Self-Optimization According to Business Objectives

Current IT related optimization efforts focus on optimizing IT level metrics such as response times, availability, etc. What the business requires is that such IT optimization be carried out so as to optimize business objectives. Such optimization is not a one-time effort as there may be significant changes, (e.g. server failures, sudden increase in the number of users) that may render any existing policy sub-optimal. Such optimization can be led in AnyLogic.

IRS Post-Filing Processes Simulation Modeling: A Comparison of DES with Econometric Microsimulation in Tax Administration

IRS Office of Research Headquarters measures and models taxpayer burden, defined as expenditures of time and money by taxpayers to comply with the federal tax system. In this research activity, IRS created two microsimulation models using econometric techniques to enable the Service to produce annual estimates of taxpayer compliance burden for individual and small business populations. Additionally, a Discrete Event Simulation (DES) model was developed to represent taxpayer activities and IRS administration in postfiling processes.

Java Engine for UML Based Hybrid State Machines

One of the approaches to modeling hybrid systems is to assign algebraic-differential equations describing the continuous behavior to states of state machines that represent discrete logic. The resulting hybrid state machine is a powerful concept to specify complex interdependencies between discrete and continuous time behaviors. It, however, exposes the simulation engine to a number of problems, which we discuss. The hybrid state machine based approach presented in this paper is fully supported by UML-RT/Java tool TimeBroker developed at Experimental Object Technologies.

Modeling S-Class Car Seat Control with AnyLogic — Daimler-Chrysler Modeling Contest

In this paper we give an overview of the car seat model that was developed for Daimler-Chrysler modeling contest in year 2001 and was awarded the 1st prize. We outline the OO UML-RT based modeling approach that was used and the simulation tool AnyLogic that supports it, and discuss their main advantages with respect to automotive area.