Transportation Optimization with AnyLogic Software for International Truck Manufacturer

Transportation Optimization with AnyLogic Software for International Truck Manufacturer

Problem

The KAMAZ company is the largest CIS manufacturer of heavy trucks. It produces not only motor cars, but also buses, trailers, truck cranes, and other vehicles. One of the company’s developments is the technology of a swap body container shipment — the "Kamatainer". This method is used in cases when the starting and ending delivery points are located far from each other. The route is split into several legs, and at each of them the container is transported by different tractors. Thus, fewer trucks are used, they break down less often, and the delivery takes less time.

Within the framework of the "Kamatainer" project, the company introduced a new special semi-trailer KAMAZ tractor unit that can be equipped with a dismountable multi-purpose container. Such containers are lighter, cheaper, more spacious, and easier to reload than the standard ones. The container change process takes five to seven minutes, so the vehicle travels over its route faster, passes the container to the other vehicle, and returns to its base carrying another container.

At the initial stage of the project, the management of KAMAZ wanted to understand to what extent the swap body container delivery was more effective than the conventional delivery modes. This is why the company commissioned a study on the transport planning and future routes simulation. The developers simulated the real processes of intracity and intercity transportations in the KAMAZ supply network to compare the number of tractors and containers required in the case of the swap body delivery method versus the conventional ones, and to conduct transportation simulation model stress tests. The developers chose AnyLogic transport optimization software as a modeling tool and exploited one of its advantages, an agent-based approach to simulation, for describing the behavior of each component within the supply chain in detail.

Intracity transportation modeling

Solution

In the designed model, the developers reflected the transportation process of various components from the suppliers’ warehouses to the warehouse of the KAMAZ assembly line facility. This process involved 70 trucks performing up to 200 rides a day. The simulation model showcased this process and also demonstrated the swap body delivery using the "Kamatainer" trucks.

The main agents of the model were the tractors, the warehouse of assembly line facility, and the suppliers’ warehouses. The visual animation was displayed on a GIS map of the warehouses, the tractors’ movement, and the container loading process in the suppliers’ warehouses.

Intracity transport planning software
Intracity transport planning software

At the beginning of the work day, the containers in the warehouse of assembly line facility were empty while the containers in the suppliers' warehouses were loaded. The tractor collected an empty container from the warehouse of assembly line facility and delivered it to the supplier's warehouse. Afterwards, it collected the loaded container from the same, or the nearest site, and delivered it to the warehouse of assembly line facility. In some sites, the tractor-trailers were used to deliver two containers in one ride.

The model took into account the factors that could affect the shipment efficiency, such as:

While running, the model accumulated statistics which served for later transportation resource planning and system analysis.

For warehouses:

For tractors:

Outcome

The transportation optimization model was instrumental in comparing the number of tractors, containers, and transport costs before and after the "Kamatainer" technology adoption. Simulation modeling showed that the technology of swap body delivery reduced the cost of intracity shipments nine times:

Intercity transportation modeling

Solution

The "Kamatainer" technology could also be applied for goods shipment between cities. An intercity cargo transportation simulation model was developed to evaluate the technology performance at this application area.

Intercity transportation optimization software
Intercity transportation optimization software

The following agents were represented on the GIS-map:

Tractors and drivers were attached to certain points and carried goods between their own and the neighboring points. Tractors could exploit trailers in order to transport an additional container.

At the initial route points of cargo flows, the containers piled up waiting to be dispatched. The priority for transportation was given to the tractors attached to the next point on the way. This contributed to a decrease of empty runs in the opposite direction.

Drivers attached to a tractor work in shifts. Each driver could be behind the wheel no longer than eight hours during the working day and could start the next run only after a 16-hour rest.

Outcome

In order to assess the efficiency of the swap body delivery, the experimental results were compared to the actual transportation system data:

Simulation modeling demonstrated that switching to the swap body delivery method caused the reduction in tractor number, shipment time, and total transportation cost.

In perspective, the models of intracity and intercity transportation are meant to be used as a transport planning tools and decision-support systems (DSS). They will be helpful for:

Études de cas similaires

Plus d’études de cas