Reinforcement Learning for Simulation: Business Advantages and Use Cases
Introduction
pathmind | Agenda

- **Pathmind: Reinforcement Learning for Simulation**
 - Introduction to RL
 - RL vs. Heuristics and Optimizers
 - Identify RL Use Cases and Examples
 - Integrate RL into Business Applications

- **Real-Life RL Use Cases**
 - **Engineering Group**: Flexible Manufacturing System Model
 - **Accenture**: Warehouse Putaway and Picking Model

- **Q&A**
You can think of RL and simulation as a chess game.

Reinforcement learning is the player. It makes decisions based on its training to achieve a desired outcome.

A **simulation** is the game board. It provides the environment for the reinforcement learning to take actions and defines the rules of the game.
pathmind | RL vs. Heuristics and Optimizers

- **Data** → **Decisions/Actions** → **Outcomes**

 - **Heuristics**: Static rules and equations based on best practice
 - **Optimizers**: Solvers using separate runs and weights for outcomes
 - **Signals**
 - **Predictions**
 - **Rewards**
 - **Simulation**: ‘Digital Twin’ to replicate actions and outcomes

- **Data-driven trained AI decision agent**
- **Simulation-driven trained AI decision agent**
Identifying RL Applications

- **High Variability and Randomness**: Data that changes frequently and can be random or difficult to predict.
- **Large State Spaces**: Environments with a large number of possible outcomes.
- **Multiple Contradictory Objectives**: Optimizing for more than one metric simultaneously.
Examples: Business Values of RL and Simulation

- **Multi-Echelon Inventory Management**: 34% increase in total profits
- **Interconnected Call Center Optimization**: 9.6% reduction in caller wait time
- **Energy System Operation & Maintenance**: 30% increase in total revenue
- **Maximizing Output With Factory Order Sequencing**: 16% reduction in processing time
- **Supply Chain Inventory Level Optimization**: 20% improvement over optimizer
- **Open-Pit Mine Site Haul Truck Routing**: 19% increase in total ore produced
- **Metals Processor Energy Optimization**: 10% reduction in electricity spending
- **Factory AGV Fleet Optimization**: 78% improvement over heuristic

For complete case studies, visit pathmind.com/blog.
pathmind | Deploy Policy Predictions

- Consume RL predictions in real-world business processes in 3 ways:
 - Call RL predictions from an **Excel worksheet**.
 - Use Pathmind’s REST API to integrate RL in **web applications**.
 - Directly deploy RL **offline** (i.e. no internet access) in physical machines.
Using Pathmind With AnyLogic
Engineering Group: Flexible Manufacturing System Model
Flexible Manufacturing Systems & Industry 4.0

Dayana Cope
Director of Simulation & Data Science Engineering USA
d.cope@engusa.com
A GLOBAL COMPANY
12,000+
Associates

40+
Offices around the world

North American HQ
Chicago, IL, USA

Worldwide
Delivery

Based in
EUROPE
NORTH AMERICA
SOUTH AMERICA

ASSETS
20+
Companies within the Group

20+
Proprietary solutions for all market sectors

10+
Cross-BU Competence Centers

16k+
Projects in 2020

4 Data Centers
20 petabyte
Data Handled
22,000
Servers managed
250,000
Workplaces managed
Tier IV

RESEARCH & INNOVATION
6
Development labs

70+
Live Research Projects

250+
Innovators

$48 Mil
Investments

450+
Data Scientists & Researchers

TRAINING
IT & Management School
«Enrico della Valle»
Our own Academy

150k
Training hours

WHAT WE DO
$1.5 Bn / FY20

40+ YEARS OF CONTINUOUS GROWTH

The World
We Live In

Smart Energy & Utilities
Digital Media & Communication
Augmented City
Smart Transportation

The World
We Work In

Digital Finance
Digital Industry
Digital Retail & Fashion
Smart Agriculture

The World
That Looks After Us

Smart Government
E-Health
Digital Defense, Aerospace & Homeland Security

Proprietary Solutions

Managed Services

Application Management & Transformation

12
45
43
%
Industries eXcellence Global

On a digital transformation journey to make the future of industry possible.

- Delivering the Digital Thread for Industry 4.0.
- Global Industrial System Integrator.
- End-to-End Software & Service Capabilities.
- Product-Agnostic Consulting & Solution Engineering.
- Niche & Distinctive Proprietary Methodologies.
- Complete Offering, Holistic & Coordinated.
- Strategic Global Partnerships with Customers.
Use Case: A Flexible Manufacturing Order Handling System

<table>
<thead>
<tr>
<th>Industry & Company:</th>
<th>Mechanical Manufacturing Plant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Process We Want to Optimize:</td>
<td>Production Order Management, Assignment, Sequencing & Execution in a machining Manufacturing Plant</td>
</tr>
</tbody>
</table>
| Background: | - Orders generated dynamically;
- Each order has **4 Production Phases** until finished product;
- For each product, there are **24 Possible Sequences**;
- Each phase requires a: **Machine, Tool, Pallet**;
- **Load/Unload Area** used for Pallet Association;
- Uncertainty present. |
| Objectives: | - Avoid **bottlenecks**.
- Minimize total order processing time.
- Enable automated order handling and sequencing. |
| Achievements: | Optimized line **load balancing** reducing the frequency of bottlenecks and Deep Reinforcement Learning effective **job insertion strategy** beat out heuristic |
Insights: Flexible F&B Manufacturing Order Scheduling

Simulation Set-Up:
- Each scheduling task includes:
 - Product to transfer;
 - Eventual current holding station;
 - Task type (load, unload, next phase).
- Statistical distributions for stations:
 - Failure rates;
 - Repair times.
- Tool-shuttle to move tools:
 - Addressing phase requests;
 - Needing maintenance.

Reinforcement Learning Set-Up:
- Single Agent: pallet-shuttle
- Actions:
 - Insert a new job on the production line
 - Reach a station to move placed job to next phase
- Observations:
 - Station utilization and status
 - Waiting orders
 - Time passed
 - Palette and tool availability
 - Next-phase for each job in the line

Reward Function

\[R \leftarrow (after.\texttt{produced} - before.\texttt{produced}) \times 300 \]
\[R \leftarrow (after.\texttt{timePassed} - before.\texttt{timePassed}) \times 0.1 \]
\[R \leftarrow \text{Math.pow}(after.\texttt{stationsWorking} - 3, 2) \times 2.5 \]
\[R \leftarrow after.\texttt{invalidOrderTypeInserted} \times 0.5 \]
\[R \leftarrow after.\texttt{invalidLoad} \times 0.5 \]
\[R \leftarrow (before.\texttt{lineTaktTime} - after.\texttt{lineTaktTime}) \times 0.25 \]
Findings: Flexible F&B Manufacturing Order Scheduling

Line Load Balancing

• RL to find the optimal line load to avoid deadlocks
• Improved the heuristic by RL strategy mimic

Job Insertion Strategy

• Heuristic rule based on the job completion percentage
 • Waiting orders uniformly inserted.

RL agent found a strategy to consume orders faster.
Highlights: Flexible F&B Manufacturing Order Scheduling

Deep Reinforcement Learning policy strategy reveals to be better than heuristic in term of results:
The Business Value

1. Enables “true” decision automation: from data to action!

 Business Value: Data-driven, more optimal decisions compared to heuristics and gut feel result in real savings.

2. Essential for “true” digital twin and Industry 4.0 automation!

 Business Value: Less labor needed to make repetitive, mundane decisions. Can refocus labor to other tasks gaining efficiency.

 Business Value: Reduce knowledge drain and maintain know-how embedded in models.
Accenture: Warehouse Putaway and Picking Model
ABOUT US

BRIAN ERIK OVRUM
APPLIED INTELLIGENCE
ASSOCIATE MANAGER
brian.erik.ovrum@accenture.com

AGUSTÍN ALBINATI
APPLIED INTELLIGENCE
DATA SCIENCE SR ANALYST
agustin.albinati@accenture.com
Examples: Business Values of RL and Simulation

- **Multi-Echelon Inventory Management**: 34% increase in total profits
- **Interconnected Call Center Optimization**: 9.6% reduction in caller wait time
- **Supply Chain Inventory Level Optimization**: 20% improvement over optimizer
- **Open-Pit Mine Site Haul Truck Routing**: 19% increase in total ore produced
- **Energy System Operation & Maintenance**: 30% increase in total revenue
- **Maximizing Output With Factory Order Sequencing**: 16% reduction in processing time
- **Metals Processor Energy Optimization**: 10% reduction in electricity spending
- **Factory Fleet Optimization**: 28% improvement over heuristic

For complete case studies, visit pathmind.com/blog.
pathmind | Use case: Fulfillment center

- 4 products, 5 hallways, 15 workers
- RL for put-away process – hallway selection
- Focus in optimizing put-away and pickup processes

Inbound – put-away
One type of product per truck
One truck every 30’

Outbound – pickup
Mix of products per truck
One truck every 60’
Industry: Factory Fleet Optimization

Process We Want to Optimize: Hallway selection for put-away

Background:
- IB trucks enter with one specific product
- OB trucks exit with a combination of different products
- All products have different characteristics

Objectives:
- Minimize distance traveled by workers
- Minimize trucks’ waiting time

Use case: Fulfillment center
Use case: Results

- **With RL**
 - 28% distance reduction
 - 6% time reduction in docks
 - Easy to follow decisions with great impact

- **Without RL**

![Graphs comparing delivery closeness, delivery ratio, average time in docks, and picking values with and without RL.](image-url)
Why didn’t we use common optimization algorithms?

- Time dependence
- Complexity
- Uncertainty
Identifying RL Applications

- **High Variability and Randomness**: Data that changes frequently and can be random or difficult to predict.
- **Large State Spaces**: Environments with a large number of possible outcomes.
- **Multiple Contradictory Objectives**: Optimizing for more than one metric simultaneously.
Why did we use Pathmind?

- Intuitive AnyLogic integration
- Parallel experiments
- Action Masking
- Production-ready REST API
Contact Us

Chris Nicholson
CEO
chris@pathmind.com

Edward Junprung
Head of Customer Success
edward@pathmind.com

Dayana Cope
Director of Simulation & Data Science
d.cope@engusa.com

Agustin Albinati
Data Science Sr Analyst
agustin.albinati@accenture.com

Brian Erik Ovrum
Data Science Associate Manager
brian.erik.ovrum@accenture.com

Ready to get started with RL for simulation?
Visit app.pathmind.com/sign-up to create a free account.